Mario Nonog Jr.

Mathematics Department,
US Naval Academy, Annapolis, Maryland

• 1994: RSA was broken using Shor's Algorithm on a Quantum Computer.

• 1994: RSA was broken using Shor's Algorithm on a Quantum Computer. But, don't worry $15 = 3 \times 5$.

 2016: However, it took 22 years for the National Institute of Standards and Technology (NIST) to begin the search for a new Post-Quantum Cryptography standard, in order to protect our secrets against adversaries.

- 2016: However, it took 22 years for the National Institute of Standards and Technology (NIST) to begin the search for a new Post-Quantum Cryptography standard, in order to protect our secrets against adversaries.
- 2016: NIST has evaluated over 50 cryptosystems.

- 2016: However, it took 22 years for the National Institute of Standards and Technology (NIST) to begin the search for a new Post-Quantum Cryptography standard, in order to protect our secrets against adversaries.
- 2016: NIST has evaluated over 50 cryptosystems.
- July 2020: only four are left standing. One of these is the McEliece Cryptosystem, based on error-correcting codes.

- 2016: However, it took 22 years for the National Institute of Standards and Technology (NIST) to begin the search for a new Post-Quantum Cryptography standard, in order to protect our secrets against adversaries.
- 2016: NIST has evaluated over 50 cryptosystems.
- July 2020: only four are left standing. One of these is the McEliece Cryptosystem, based on error-correcting codes.

Goal:

The goal of this project is to understand the McEliece Cryptosystem, which utilizes Goppa Codes. Goppa Codes are a subclass of Linear Codes, and are related to Cyclic Codes and BCH Codes, which what we will focus on today.

Background on Error-Correcting Codes

Alice	Public	Bob
	F.	
	Eve	

Alice	Public	Bob
		G
		9
	Eve	
	LVE	

Bob: Chooses $k \times n$ generating matrix G,

Alice	Public	Bob
		GP
		-
	Eve	

Bob: Chooses $k \times n$ generating matrix G, $n \times n$ permutation matrix P,

and

Alice	Public	Bob
		SGP
	_	
	Eve	

Bob: Chooses $k \times n$ generating matrix G, $k \times k$ invertible matrix S, and $n \times n$ permutation matrix P,

Alice	Public	Bob
		$G_1 = SGP$
		-
	Eve	
l		

Bob: Chooses $k \times n$ generating matrix G, $k \times k$ invertible matrix S, and $n \times n$ permutation matrix P,

Alice	Public	Bob
	$\textit{G}_1 \leftarrow$	$G_1 = SGP$
	Eve	

Bob: Chooses $k \times n$ generating matrix G, $k \times k$ invertible matrix S, and $n \times n$ permutation matrix P, calculates public key $G_1 = SGP$.

Alice	Public	Bob
	$\textit{G}_1 \leftarrow$	$G_1 = SGP$
G_1		
	_	
	Eve	

Bob: Chooses $k \times n$ generating matrix G, $k \times k$ invertible matrix S, and $n \times n$ permutation matrix P, calculates public key $G_1 = SGP$.

Alice	Public	Bob
	$G_1 \leftarrow$	$G_1 = SGP$
xG_1		
	Eve	

Bob: Chooses $k \times n$ generating matrix G, $k \times k$ invertible matrix S, and $n \times n$ permutation matrix P, calculates public key $G_1 = SGP$. Alice: Chooses $1 \times k$ message $x \in \mathbb{Z}_2^k$,

Alice	Public	Bob
	$\textit{G}_1 \leftarrow$	$G_1 = SGP$
$xG_1 + e$		
	Eve	
	LVE	

Bob: Chooses $k \times n$ generating matrix G, $k \times k$ invertible matrix S, and $n \times n$ permutation matrix P, calculates public key $G_1 = SGP$.

Alice	Public	Bob
	$G_1 \leftarrow$	$G_1 = SGP$
	_	-
$xG_1+e=y$		
	Eve	

Bob: Chooses $k \times n$ generating matrix G, $k \times k$ invertible matrix S, and $n \times n$ permutation matrix P, calculates public key $G_1 = SGP$.

Alice	Public	Bob
	$\textit{G}_1 \leftarrow$	$G_1 = SGP$
$xG_1+e=y$	\rightarrow	
	Eve	

Bob: Chooses $k \times n$ generating matrix G, $k \times k$ invertible matrix S, and $n \times n$ permutation matrix P, calculates public key $G_1 = SGP$.

Alice	Public	Bob
	$\textit{G}_1 \leftarrow$	$G_1 = SGP$
$xG_1+e=y$	$\rightarrow y$	
	Eve	

Bob: Chooses $k \times n$ generating matrix G, $k \times k$ invertible matrix S, and $n \times n$ permutation matrix P, calculates public key $G_1 = SGP$.

Alice	Public	Bob
	$\textit{G}_1 \leftarrow$	$G_1 = SGP$
$xG_1+e=y$	$\rightarrow y \rightarrow$	
	Eve	

Bob: Chooses $k \times n$ generating matrix G, $k \times k$ invertible matrix S, and $n \times n$ permutation matrix P, calculates public key $G_1 = SGP$.

Alice		Bob
$xG_1+e=y$	$\textit{G}_1 \leftarrow$	$G_1 = SGP$
$xG_1+e=y$	$\rightarrow y \rightarrow$	1) y
	Eve	

Bob: Chooses $k \times n$ generating matrix G, $k \times k$ invertible matrix S, and $n \times n$ permutation matrix P, calculates public key $G_1 = SGP$.

Alice	Public	Bob
$xG_1 + e = y$	$G_1 \leftarrow$	$G_1 = SGP$
$xG_1+e=y$	$\rightarrow y \rightarrow$	1) yP^{-1}
	Eve	

Bob: Chooses $k \times n$ generating matrix G, $k \times k$ invertible matrix S, and $n \times n$ permutation matrix P, calculates public key $G_1 = SGP$.

Alice	Public	Bob
	$G_1 \leftarrow$	$G_1 = SGP$
$xG_1 + e = y$	$\rightarrow y \rightarrow$	1) $r_1 = yP^{-1}$
	Eve	

Bob: Chooses $k \times n$ generating matrix G, $k \times k$ invertible matrix S, and $n \times n$ permutation matrix P, calculates public key $G_1 = SGP$.

Alice	Public	Bob
	$\textit{G}_1 \leftarrow$	$G_1 = SGP$
$xG_1+e=y$	$\rightarrow y \rightarrow$	$G_1 = SGP$ 1) $r_1 = yP^{-1} = (xG_1 + e)$
	Eve	

Bob: Chooses $k \times n$ generating matrix G, $k \times k$ invertible matrix S, and $n \times n$ permutation matrix P, calculates public key $G_1 = SGP$.

Alice	Public	Bob
	$\textit{G}_1 \leftarrow$	$G_1 = SGP$
$xG_1+e=y$	$\rightarrow y \rightarrow$	$G_1 = SGP$ 1) $r_1 = yP^{-1} = (xG_1 + e)P^{-1}$
	г.	
	Eve	

Bob: Chooses $k \times n$ generating matrix G, $k \times k$ invertible matrix S, and $n \times n$ permutation matrix P, calculates public key $G_1 = SGP$.

Alice	Public	Bob
	$G_1 \leftarrow$	$G_1 = SGP$
$xG_1+e=y$	$\rightarrow y \rightarrow$	$G_1 = SGP$ 1) $r_1 = yP^{-1} = (xG_1 + e)P^{-1}$ = (SGP)
	Eve	

Bob: Chooses $k \times n$ generating matrix G, $k \times k$ invertible matrix S, and $n \times n$ permutation matrix P, calculates public key $G_1 = SGP$.

Alice	Public	Bob
	$G_1 \leftarrow$	$G_1 = SGP$
$xG_1+e=y$	$\rightarrow y \rightarrow$	$G_1 = SGP$ 1) $r_1 = yP^{-1} = (xG_1 + e)P^{-1}$ = $x(SGP)$
	Eve	

Bob: Chooses $k \times n$ generating matrix G, $k \times k$ invertible matrix S, and $n \times n$ permutation matrix P, calculates public key $G_1 = SGP$.

Alice	Public	Bob
	$\textit{G}_1 \leftarrow$	$G_1 = SGP$
$xG_1 + e = y$	$\rightarrow y \rightarrow$	$G_1 = SGP$ 1) $r_1 = yP^{-1} = (xG_1 + e)P^{-1}$ $= x(SGP) + e$
		= X(3Gr) + e
	Eve	

Bob: Chooses $k \times n$ generating matrix G, $k \times k$ invertible matrix S, and $n \times n$ permutation matrix P, calculates public key $G_1 = SGP$.

Alice	Public	Bob
	$G_1 \leftarrow$	$G_1 = SGP$
$xG_1+e=y$	$\rightarrow y \rightarrow$	$G_1 = SGP$ 1) $r_1 = yP^{-1} = (xG_1 + e)P^{-1}$ $= x(SGP)P^{-1} + eP^{-1}$
	Eve	

Bob: Chooses $k \times n$ generating matrix G, $k \times k$ invertible matrix S, and $n \times n$ permutation matrix P, calculates public key $G_1 = SGP$.

Alice	Public	Bob
	$G_1 \leftarrow$	$G_1 = SGP$
$xG_1 + e = y$	$\rightarrow y \rightarrow$	Bob $G_1 = SGP$ 1) $r_1 = yP^{-1} = (xG_1 + e)P^{-1}$ $= x(SGP)P^{-1} + eP^{-1}$ $= + eP^{-1}$
	Eve	

Bob: Chooses $k \times n$ generating matrix G, $k \times k$ invertible matrix S, and $n \times n$ permutation matrix P, calculates public key $G_1 = SGP$.

Alice	Public	Bob
	$\textit{G}_1 \leftarrow$	$G_1 = SGP$
$xG_1 + e = y$	$\rightarrow y \rightarrow$	Bob $G_1 = SGP$ 1) $r_1 = yP^{-1} = (xG_1 + e)P^{-1}$ $= x(SGP)P^{-1} + eP^{-1}$ $= (xS) + eP^{-1}$
	Eve	

Bob: Chooses $k \times n$ generating matrix G, $k \times k$ invertible matrix S, and $n \times n$ permutation matrix P, calculates public key $G_1 = SGP$.

Alice	Public	Bob
	$\textit{G}_1 \leftarrow$	$G_1 = SGP$
$xG_1 + e = y$	$\rightarrow y \rightarrow$	Bob $G_1 = SGP$ 1) $r_1 = yP^{-1} = (xG_1 + e)P^{-1}$ $= x(SGP)P^{-1} + eP^{-1}$ $= (xS)G + eP^{-1}$
	Eve	

Bob: Chooses $k \times n$ generating matrix G, $k \times k$ invertible matrix S, and $n \times n$ permutation matrix P, calculates public key $G_1 = SGP$.

Alice	Public	Bob
	$G_1 \leftarrow$	$G_1 = SGP$
$xG_1+e=y$	$\rightarrow y \rightarrow$	Bob $G_1 = SGP$ 1) $r_1 = yP^{-1} = (xG_1 + e)P^{-1}$ $= x(SGP)P^{-1} + eP^{-1}$ $= (xS)G + eP^{-1}$ 2) Compute syndrome r_1H^T
	Eve	

Bob: Chooses $k \times n$ generating matrix G, $k \times k$ invertible matrix S, and $n \times n$ permutation matrix P, calculates public key $G_1 = SGP$.

Alice	Public	Bob
	$G_1 \leftarrow$	$G_1 = SGP$
$xG_1+e=y$	$\rightarrow y \rightarrow$	Bob $G_1 = SGP$ 1) $r_1 = yP^{-1} = (xG_1 + e)P^{-1}$ $= x(SGP)P^{-1} + eP^{-1}$ $= (xS)G + eP^{-1}$ 2) Compute syndrome r_1H^T 3) Lookup the codeword
	Eve	

Bob: Chooses $k \times n$ generating matrix G, $k \times k$ invertible matrix S, and $n \times n$ permutation matrix P, calculates public key $G_1 = SGP$.

Alice	Public	Bob
	$\textit{G}_1 \leftarrow$	$G_1 = SGP$
$xG_1 + e = y$	$\rightarrow y \rightarrow$	Bob $G_1 = SGP$ 1) $r_1 = yP^{-1} = (xG_1 + e)P^{-1}$ $= x(SGP)P^{-1} + eP^{-1}$ $= (xS)G + eP^{-1}$ 2) Compute syndrome r_1H^T 3) Lookup the codeword $c_1 = (xS)G$
	Eve	

Bob: Chooses $k \times n$ generating matrix G, $k \times k$ invertible matrix S, and $n \times n$ permutation matrix P, calculates public key $G_1 = SGP$.

Alice	Public	Bob
	$G_1 \leftarrow$	$G_1 = SGP$
$xG_1+e=y$	$\rightarrow y \rightarrow$	Bob $G_1 = SGP$ 1) $r_1 = yP^{-1} = (xG_1 + e)P^{-1}$ $= x(SGP)P^{-1} + eP^{-1}$ $= (xS)G + eP^{-1}$ 2) Compute syndrome r_1H^T 3) Lookup the codeword $c_1 = (xS)G = x_1$
	Eve	

Bob: Chooses $k \times n$ generating matrix G, $k \times k$ invertible matrix S, and $n \times n$ permutation matrix P, calculates public key $G_1 = SGP$.

Alice	Public	Bob
	$\textit{G}_1 \leftarrow$	$G_1 = SGP$
$xG_1+e=y$	$\rightarrow y \rightarrow$	Bob $G_1 = SGP$ 1) $r_1 = yP^{-1} = (xG_1 + e)P^{-1}$ $= x(SGP)P^{-1} + eP^{-1}$ $= (xS)G + eP^{-1}$ 2) Compute syndrome r_1H^T 3) Lookup the codeword $c_1 = (xS)G = x_1G$
	Eve	

Bob: Chooses $k \times n$ generating matrix G, $k \times k$ invertible matrix S, and $n \times n$ permutation matrix P, calculates public key $G_1 = SGP$.

Alice	Public	Bob
	$\textit{G}_1 \leftarrow$	$G_1 = SGP$
$xG_1+e=y$	$\rightarrow y \rightarrow$	Bob $G_1 = SGP$ 1) $r_1 = yP^{-1} = (xG_1 + e)P^{-1}$ $= x(SGP)P^{-1} + eP^{-1}$ $= (xS)G + eP^{-1}$ 2) Compute syndrome r_1H^T 3) Lookup the codeword $c_1 = (xS)G = x_1G$ associated with received word r_1
	Eve	

Bob: Chooses $k \times n$ generating matrix G, $k \times k$ invertible matrix S, and $n \times n$ permutation matrix P, calculates public key $G_1 = SGP$.

Alice	Public	Bob
	$\textit{G}_1 \leftarrow$	$G_1 = SGP$
$xG_1 + e = y$	$\rightarrow y \rightarrow$	Bob $G_1 = SGP$ 1) $r_1 = yP^{-1} = (xG_1 + e)P^{-1}$ $= x(SGP)P^{-1} + eP^{-1}$ $= (xS)G + eP^{-1}$ 2) Compute syndrome r_1H^T 3) Lookup the codeword $c_1 = (xS)G = x_1G$ associated with received word r_1 4) Extract message $x_1 = (xS)$
	Eve	

Bob: Chooses $k \times n$ generating matrix G, $k \times k$ invertible matrix S, and $n \times n$ permutation matrix P, calculates public key $G_1 = SGP$.

Alice	Public	Bob
	$\textit{G}_1 \leftarrow$	$G_1 = SGP$
$xG_1+e=y$	$\rightarrow y \rightarrow$	Bob $G_1 = SGP$ 1) $r_1 = yP^{-1} = (xG_1 + e)P^{-1}$ $= x(SGP)P^{-1} + eP^{-1}$ $= (xS)G + eP^{-1}$ 2) Compute syndrome r_1H^T 3) Lookup the codeword $c_1 = (xS)G = x_1G$ associated with received word r_1 4) Extract message $x_1 = (xS)$ associated with code word c_1 (first k bits)
	Eve	

Bob: Chooses $k \times n$ generating matrix G, $k \times k$ invertible matrix S, and $n \times n$ permutation matrix P, calculates public key $G_1 = SGP$.

Alice	Public	Bob
	$G_1 \leftarrow$	$G_1 = SGP$
$xG_1+e=y$	$\rightarrow y \rightarrow$	Bob $G_1 = SGP$ 1) $r_1 = yP^{-1} = (xG_1 + e)P^{-1}$ $= x(SGP)P^{-1} + eP^{-1}$ $= (xS)G + eP^{-1}$ 2) Compute syndrome r_1H^T 3) Lookup the codeword $c_1 = (xS)G = x_1G$ associated with received word r_1 4) Extract message $x_1 = (xS)$ associated with code word c_1 (first k bits)
	Eve	5) Compute x_1S^{-1}

Bob: Chooses $k \times n$ generating matrix G, $k \times k$ invertible matrix S, and $n \times n$ permutation matrix P, calculates public key $G_1 = SGP$.

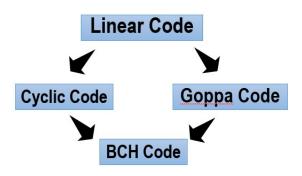
Alice	Public	Bob
	$\textit{G}_1 \leftarrow$	$G_1 = SGP$
$xG_1+e=y$	$\rightarrow y \rightarrow$	$G_1 = SGP$ 1) $r_1 = yP^{-1} = (xG_1 + e)P^{-1}$ $= x(SGP)P^{-1} + eP^{-1}$ $= (xS)G + eP^{-1}$ 2) Compute syndrome r_1H^T 3) Lookup the codeword $c_1 = (xS)G = x_1G$ associated with received word r_1 4) Extract message $x_1 = (xS)$ associated with code word c_1 (first k bits)
	Eve	5) Compute $x_1S^{-1} = (xS)S^{-1}$

Bob: Chooses $k \times n$ generating matrix G, $k \times k$ invertible matrix S, and $n \times n$ permutation matrix P, calculates public key $G_1 = SGP$.

Alice	Public	Bob
	$G_1 \leftarrow$	$G_1 = SGP$
$xG_1+e=y$	$\rightarrow y \rightarrow$	$G_1 = SGP$ 1) $r_1 = yP^{-1} = (xG_1 + e)P^{-1}$ $= x(SGP)P^{-1} + eP^{-1}$ $= (xS)G + eP^{-1}$ 2) Compute syndrome r_1H^T 3) Lookup the codeword $c_1 = (xS)G = x_1G$ associated with received word r_1 4) Extract message $x_1 = (xS)$ associated with code word c_1 (first k bits)
	Eve	5) Compute $x_1S^{-1} = (xS)S^{-1} = x$

Bob: Chooses $k \times n$ generating matrix G, $k \times k$ invertible matrix S, and $n \times n$ permutation matrix P, calculates public key $G_1 = SGP$.

The McEliece Cryptosystem



The McEliece Cryptosystem

The McEliece Cryptosystem uses a Goppa code of length 1024 that can correct 50 errors. In this case, Eve has $\binom{1024}{50} \approx 3x10^{85}$ possible locations of the errors.

• **Definition:** An [n, k, d] linear code is a vector space with dimension k and length n over a field \mathbb{F} , where the combination of any two codewords is always a codeword, with minimum distance d between two codewords.

- **Definition:** An [n, k, d] linear code is a vector space with dimension k and length n over a field \mathbb{F} , where the combination of any two codewords is always a codeword, with minimum distance d between two codewords.
- Parity Check Matrix (PCM Hamming Code): Given generating matrix $G = [I_k, P] \in C$, then $H = [-P^T, I_{n-k}]$ is a parity check matrix for C if and only if $rH^T = 0$

- **Definition:** An [n, k, d] linear code is a vector space with dimension k and length n over a field \mathbb{F} , where the combination of any two codewords is always a codeword, with minimum distance d between two codewords.
- Parity Check Matrix (PCM Hamming Code): Given generating matrix $G = [I_k, P] \in C$, then $H = [-P^T, I_{n-k}]$ is a parity check matrix for C if and only if $rH^T = 0$

- **Definition:** An [n, k, d] linear code is a vector space with dimension k and length n over a field \mathbb{F} , where the combination of any two codewords is always a codeword, with minimum distance d between two codewords.
- Parity Check Matrix (PCM Hamming Code): Given generating matrix $G = [I_k, P] \in C$, then $H = [-P^T, I_{n-k}]$ is a parity check matrix for C if and only if $rH^T = 0$
- Coset: Given linear code C, and n-dimensional vector r, a coset is the set of r+C. The vector with minimum Hamming weight is the

- **Definition:** An [n, k, d] linear code is a vector space with dimension k and length n over a field \mathbb{F} , where the combination of any two codewords is always a codeword, with minimum distance d between two codewords.
- Parity Check Matrix (PCM Hamming Code): Given generating matrix $G = [I_k, P] \in C$, then $H = [-P^T, I_{n-k}]$ is a parity check matrix for C if and only if $rH^T = 0$
- **Coset:** Given linear code C, and n-dimensional vector r, a coset is the set of r + C. The vector with minimum Hamming weight is the **coset leader**.

- **Definition:** An [n, k, d] linear code is a vector space with dimension k and length n over a field \mathbb{F} , where the combination of any two codewords is always a codeword, with minimum distance d between two codewords.
- Parity Check Matrix (PCM Hamming Code): Given generating matrix $G = [I_k, P] \in C$, then $H = [-P^T, I_{n-k}]$ is a parity check matrix for C if and only if $rH^T = 0$
- **Coset:** Given linear code C, and n-dimensional vector r, a coset is the set of r + C. The vector with minimum Hamming weight is the **coset leader**.
- Given a linear code C, s errors detected if minimum distance $d(C) \ge s+1$

- **Definition:** An [n, k, d] linear code is a vector space with dimension k and length n over a field \mathbb{F} , where the combination of any two codewords is always a codeword, with minimum distance d between two codewords.
- Parity Check Matrix (PCM Hamming Code): Given generating matrix $G = [I_k, P] \in C$, then $H = [-P^T, I_{n-k}]$ is a parity check matrix for C if and only if $rH^T = 0$
- **Coset:** Given linear code C, and n-dimensional vector r, a coset is the set of r + C. The vector with minimum Hamming weight is the **coset leader**.
- Given a linear code C, s errors detected if minimum distance $d(C) \ge s+1$
- Given a linear code C, t errors corrected if $d(C) \ge 2t + 1$

- **Definition:** An [n, k, d] linear code is a vector space with dimension k and length n over a field \mathbb{F} , where the combination of any two codewords is always a codeword, with minimum distance d between two codewords.
- Parity Check Matrix (PCM Hamming Code): Given generating matrix $G = [I_k, P] \in C$, then $H = [-P^T, I_{n-k}]$ is a parity check matrix for C if and only if $rH^T = 0$
- Coset: Given linear code C, and n-dimensional vector r, a
 coset is the set of r + C. The vector with minimum Hamming
 weight is the coset leader.
- Given a linear code C, s errors detected if minimum distance $d(C) \ge s+1$
- Given a linear code C, t errors corrected if $d(C) \ge 2t + 1$
- **Syndrome:** This is defined as $S(r) = rH^T$

• How to DECODE a received word r?

- How to DECODE a received word r?
 - **1** Calculate the syndrome, $S(r) = rH^T$.

- How to DECODE a received word r?
 - **1** Calculate the syndrome, $S(r) = rH^T$.
 - Find which coset the syndrome belongs.

- How to DECODE a received word r?
 - Calculate the syndrome, $S(r) = rH^T$.
 - 2 Find which coset the syndrome belongs.
 - Sook for the coset leader.

- How to DECODE a received word r?
 - Calculate the syndrome, $S(r) = rH^T$.
 - 2 Find which coset the syndrome belongs.
 - Sook for the coset leader.
 - message = r coset leader.

Example: Consider a [4,2,2] linear code with G

Example: Consider a [4,2,2] linear code with G

generating matrix
$$G = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$
,

Here is the lookup table for decoding received words.

$$(0,0,0,0)(1,0,0,1)(0,1,0,1)(1,1,0,0)$$

 $(1,0,0,0)(0,0,0,1)(1,1,0,1)(0,1,0,0)$
 $(0,0,1,0)(1,0,1,1)(0,1,1,1)(1,1,1,0)$
 $(0,0,1,1)(1,0,1,0)(0,1,1,0)(1,1,1,1)$

Example: Consider a [4,2,2] linear code with G,H.

generating matrix
$$G = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$
,

Here is the lookup table for decoding received words.

$$(0,0,0,0)(1,0,0,1)(0,1,0,1)(1,1,0,0)$$

 $(1,0,0,0)(0,0,0,1)(1,1,0,1)(0,1,0,0)$
 $(0,0,1,0)(1,0,1,1)(0,1,1,1)(1,1,1,0)$
 $(0,0,1,1)(1,0,1,0)(0,1,1,0)(1,1,1,1)$

Example: Consider a [4,2,2] linear code with G,H.

generating matrix
$$G = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$
 ,

parity check matrix
$$H = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

Here is the lookup table for decoding received words.

$$(0,0,0,0)(1,0,0,1)(0,1,0,1)(1,1,0,0)$$

 $(1,0,0,0)(0,0,0,1)(1,1,0,1)(0,1,0,0)$
 $(0,0,1,0)(1,0,1,1)(0,1,1,1)(1,1,1,0)$
 $(0,0,1,1)(1,0,1,0)(0,1,1,0)(1,1,1,1)$

Alice encodes message x = [1, 1] by computing xG = [1, 1, 0, 0]. She sends to Bob through a noisy channel, and Bob receives r = (1, 1, 1, 0).

Next, Bob must **DECODE**, by calculating the syndrome $S(r) = rH^T$.

Coset Leader	Syndrome				
(0,0,0,0)	(0,0)		[0	1	
(1,0,0,0)	(0,1)	S(r) = (1, 1, 1, 0)	0	1	= (1,0).
(0,0,1,0)	(1,0)	S(t) = (1, 1, 1, 0)	1	0	-(1,0).
(0,0,1,1)	(1,1)		0	1	

Thus, code word =

Alice encodes message x = [1, 1] by computing xG = [1, 1, 0, 0]. She sends to Bob through a noisy channel, and Bob receives r = (1, 1, 1, 0).

Coset Leader	Syndrome	
(0,0,0,0)	(0,0)	[0 1]
(1,0,0,0)	(0, 1)	$S(r) = (1, 1, 1, 0) \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} = (1, 0).$
(0,0,1,0)	(1,0)	$3(7) = (1, 1, 1, 0) \mid 1 \mid 0 \mid = (1, 0).$
(0,0,1,1)	(1, 1)	[0 1]

Thus, code word =
$$\underbrace{(1,1,1,0)}_{\text{received word}}$$

Alice encodes message x = [1, 1] by computing xG = [1, 1, 0, 0]. She sends to Bob through a noisy channel, and Bob receives r = (1, 1, 1, 0).

$$\begin{array}{c|c|c} \hline \text{Coset Leader} & \text{Syndrome} \\ \hline \hline (0,0,0,0) & (0,0) \\ (1,0,0,0) & (0,1) \\ (0,0,1,0) & (1,0) \\ (0,0,1,1) & (1,1) \\ \hline \end{array} \hspace{0.2cm} S(r) = (1,1,1,0) \begin{bmatrix} 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ \end{bmatrix} = (1,0).$$

Thus, code word
$$\underbrace{(1,1,1,0)}_{\text{received word}}$$
 $\underbrace{-(0,0,1,0)}_{\text{coset leader}}$

Alice encodes message x = [1, 1] by computing xG = [1, 1, 0, 0]. She sends to Bob through a noisy channel, and Bob receives r = (1, 1, 1, 0).

$$\begin{array}{c|c|c} \hline \text{Coset Leader} & \text{Syndrome} \\ \hline \hline (0,0,0,0) & (0,0) \\ (1,0,0,0) & (0,1) \\ (0,0,1,0) & (1,0) \\ (0,0,1,1) & (1,1) \\ \hline \end{array} \hspace{0.2cm} S(r) = (1,1,1,0) \begin{bmatrix} 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ \end{bmatrix} = (1,0).$$

Thus, code word =
$$\underbrace{(1,1,1,0)}_{\text{received word}}$$
 - $\underbrace{(0,0,1,0)}_{\text{coset leader}}$ = $\underbrace{(1,1,1,0)}_{\text{coset leader}}$, 0,0)

Alice encodes message x = [1, 1] by computing xG = [1, 1, 0, 0]. She sends to Bob through a noisy channel, and Bob receives r = (1, 1, 1, 0).

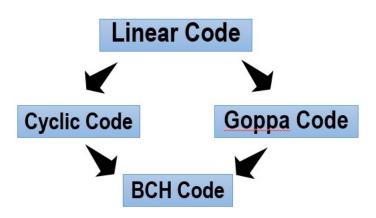
Coset Leader	Syndrome				
(0,0,0,0)	(0,0)		0	1	
(1,0,0,0)	(0,1)	S(r) = (1, 1, 1, 0)	0	1	= (1,0).
(0,0,1,0)	(1,0)	S(I) = (1, 1, 1, 0)	1	0	-(1,0).
(0,0,1,1)	(1,1)		0	1 _	

Thus, code word =
$$\underbrace{(1,1,1,0)}_{\text{received word}}$$
 - $\underbrace{(0,0,1,0)}_{\text{coset leader}}$ = $\underbrace{(1,1,0,0)}_{\text{codeword}}$

Alice encodes message x = [1, 1] by computing xG = [1, 1, 0, 0]. She sends to Bob through a noisy channel, and Bob receives r = (1, 1, 1, 0).

$$\begin{array}{c|c|c} \hline \text{Coset Leader} & \text{Syndrome} \\ \hline \hline (0,0,0,0) & (0,0) \\ (1,0,0,0) & (0,1) \\ (0,0,1,0) & (1,0) \\ (0,0,1,1) & (1,1) \\ \hline \end{array} \hspace{0.2cm} S(r) = (1,1,1,0) \begin{bmatrix} 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ \end{bmatrix} = (1,0).$$

Thus, code word =
$$\underbrace{(1,1,1,0)}_{\text{received word}}$$
 - $\underbrace{(0,0,1,0)}_{\text{coset leader}}$ = $\underbrace{(1,1,0,0)}_{\text{message}}$ = $\underbrace{(0,0,1,0)}_{\text{codeword}}$



A code is said to be a cyclic code if it contains the property

$$(c_1, c_2, ..., c_{n-1}, c_n) \in C \iff (c_n, c_1, c_2, ..., c_{n-1}) \in C$$

Given
$$g(X) = g_0 + g_1X + \cdots + g_{n-1}X^{n-1} + g_{n-k}X^{n-k}$$
, and $h(X) = h_0 + h_1X + \cdots + h_{k-1}X + h_kX^k$ (where $g(X)h(X) = X^n - 1$), we formulate $k \times n$ generating matrix G

A code is said to be a cyclic code if it contains the property

$$(c_1, c_2, ..., c_{n-1}, c_n) \in C \iff (c_n, c_1, c_2, ..., c_{n-1}) \in C$$

Given $g(X)=g_0+g_1X+\cdots+g_{n-1}X^{n-1}+g_{n-k}X^{n-k}$, and $h(X)=h_0+h_1X+\cdots+h_{k-1}X+h_kX^k$ (where $g(X)h(X)=X^n-1$), we formulate $k\times n$ generating matrix G

$$\begin{array}{|c|c|c|c|c|c|}\hline (g_0 & g_1 & \cdots & g_{n-k} & 0 & \cdots & 0 \\ \hline (0 & g_0 & g_1 & \cdots & g_{n-k} & 0 & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & g_0 & g_1 & \cdots & g_{n-k} \\ \hline (G & & & & & & & & & & & & \\\hline (G & & & & & & & & & & & \\\hline (G & & & & & & & & & & & \\\hline (G & & & & & & & & & & & & \\\hline (G & & & & & & & & & & & \\\hline (G & & & & & & & & & & & \\\hline (G & & & & & & & & & & & \\\hline (G & & & & & & & & & & & \\\hline (G & & & & & & & & & & & \\\hline (G & & & & & & & & & & & \\\hline (G & & & & & & & & & & & \\\hline (G & & & & & & & & & & & \\\hline (G & & & & & & & & & & & \\\hline (G & & & & & & & & & & & \\\hline (G & & & & & & & & & & \\\hline (G & & & & & & & & & & \\\hline (G & & & & & & & & & & \\\hline (G & & & & & & & & & & \\\hline (G & & & & & & & & & & \\\hline (G & & & & & & & & & & \\\hline (G & & & & & & & & & & \\\hline (G & & & & & & & & & & \\\hline (G & & & & & & & & & & \\\hline (G & & & & & & & & & & \\\hline (G & & & & & & & & & \\\hline (G & & & & & & & & & \\\hline (G & & & & & & & & & & \\\hline (G & & & & & & & & & & \\\hline (G & & & & & & & & & & \\\hline (G & & & & & & & & & & \\\hline (G & & & & & & & & & & \\\hline (G & & & & & & & & & & \\\hline (G & & & & & & & & & & \\\hline (G & & & & & & & & & & \\\hline (G & & & & & & & & & & \\\hline (G & & & & & & & & & & \\\hline (G & & & & & & & & & & \\\hline (G & & & & & & & & \\\hline (G & & & & & & & & \\\hline (G & & & & & & & & \\\hline (G & & & & & & & & \\\hline (G & & & & & & & & \\\hline (G & & & & & & & & \\\hline (G & & & & & & & & \\\hline (G & & & & & & & & & \\\hline (G & & & & & & & & \\\hline (G & & & & & & & & \\\hline (G & & & & & & & & \\\hline (G & & & & & & & &$$

A code is said to be a cyclic code if it contains the property

$$(c_1, c_2, ..., c_{n-1}, c_n) \in C \iff (c_n, c_1, c_2, ..., c_{n-1}) \in C$$

Given $g(X) = g_0 + g_1X + \cdots + g_{n-1}X^{n-1} + g_{n-k}X^{n-k}$, and $h(X) = h_0 + h_1X + \cdots + h_{k-1}X + h_kX^k$ (where $g(X)h(X) = X^n - 1$), we formulate $k \times n$ generating matrix G and $(n - k) \times n$ parity check matrix H.

$$\begin{bmatrix} g_0 & g_1 & \cdots & g_{n-k} & 0 & \cdots & 0 \\ 0 & g_0 & g_1 & \cdots & g_{n-k} & 0 & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & g_0 & g_1 & \cdots & g_{n-k} \end{bmatrix}$$

A code is said to be a cyclic code if it contains the property

$$(c_1, c_2, ..., c_{n-1}, c_n) \in C \iff (c_n, c_1, c_2, ..., c_{n-1}) \in C$$

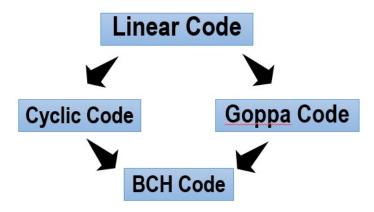
Given $g(X) = g_0 + g_1X + \cdots + g_{n-1}X^{n-1} + g_{n-k}X^{n-k}$, and $h(X) = h_0 + h_1X + \cdots + h_{k-1}X + h_kX^k$ (where $g(X)h(X) = X^n - 1$), we formulate $k \times n$ generating matrix G and $(n - k) \times n$ parity check matrix H.

$$\underbrace{ \begin{bmatrix} g_0 & g_1 & \cdots & g_{n-k} & 0 & \cdots & 0 \\ 0 & g_0 & g_1 & \cdots & g_{n-k} & 0 & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & g_0 & g_1 & \cdots & g_{n-k} \end{bmatrix} }_{G} \underbrace{ \begin{bmatrix} h_k & h_{k-1} & \cdots & h_0 & 0 & \cdots & 0 \\ 0 & h_k & h_{k-1} & \cdots & h_0 & 0 & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & h_k & h_{k-1} & \cdots & h_0 \end{bmatrix} }_{H}$$

Example: Here is an [n, k, d] = [7, 3, 4] cyclic code C.

$$X^7 - 1 = g(X)h(X) = \underbrace{(X^4 + X^2 + X + 1)}_{g(X)}\underbrace{(X^3 + X + 1)}_{h(X)}.$$

Then 3×7 generating matrix G and 4×7 parity check matrix H are:



Theorem

Let C be an [n,k,d] cyclic code over $\mathbb{F}_{q=p^m}$, where $p \nmid n$. Let α be a primitive n-th root of unity, and let g(X) be a generating polynomial for C. Suppose there exist integers ℓ and δ such that

$$g(\alpha^{\ell}) = g(\alpha^{\ell+1}) = \cdots = g(\alpha^{\ell+\delta}) = 0$$

Then the minimum distance $d \ge \delta + 2$.

The parity check matrix H is

$$H = \begin{bmatrix} 1 & \alpha^{k+1} & \alpha^{2(k+1)} & \dots & \alpha^{(n-1)(k+1)} \\ 1 & \alpha^{k+2} & \alpha^{2(k+2)} & \dots & \alpha^{(n-1)(k+2)} \end{bmatrix}$$

How to DECODE a received word r for one error?

- Calculate $rH^T = (s_1, s_2)$.
- ② If $s_1 = 0$, then no error (r is a codeword).
- **3** If $s_1 \neq 0$, compute $\frac{s_2}{s_1} = \alpha^{j-1}$, where j is position of error.
- r e =codeword

Example: Consider a [7,1,7] BCH code with generating polynomial $g(X) = X^6 + X^5 + X^4 + X^3 + X^2 + X + 1$. There are two codewords: (0,0,0,0,0,0,0) and (1,1,1,1,1,1,1). Suppose Bob receives r = (1,1,1,0,1,1,1). Detect and correct the error! **Solution:** Since $rH^T = (s_1, s_2)$, we see

$$rH^T = (1, 1, 1, 0, 1, 1, 1) \begin{bmatrix} 1 & 1 \\ \alpha & \alpha^2 \\ \alpha^2 & \alpha^4 \\ \vdots & \vdots \\ \alpha^6 & \alpha^{12} \end{bmatrix} = (s_1, s_2) = (\alpha^3, \alpha^6)$$

Since $s_1 \neq 0$, we calculate $\frac{s_2}{s_1} = \frac{\alpha^6}{\alpha^3} = \alpha^3$. Therefore, j-1=3, so the error position is at j=4. Finally, we see

$$r-e = \underbrace{(1,1,1,0,1,1,1)}_{\text{received word}} - \underbrace{(0,0,0,1,0,0,0)}_{\text{error vector}} = \underbrace{(\underbrace{1}_{\text{message}},1,1,1,1,1,1,1)}_{\text{codeword}}$$

References

- Introduction to Cryptography with Coding Theory, by W. Trappe, L. Washington, Pearson, 2nd edition, 2006
- Fundamentals of Error-Correcting Codes, by V. Pless, W.C. Huffman, Cambridge University Press, 2003

Conclusion

